

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

INFORME DE GESTIÓN 2017

INVESTIGACIÓN . TRANSFERENCIA TECNOLÓGICA . INNOVACIÓN . TRANSFERENCIA DE CONOCIMIENTO

Contenido

MENSAJE DEL DIRECTOR

1.	PRES	SENTACIÓN DEL CENTRO	1
	1.1.	¿ Quiénes somos ?	1
	1.2.	Ejes estratégicos del centro	2
	1.3.	Resultados I+D+I de los últimos años	3
2.	EJE I	DE INVESTIGACIÓN	5
	2.1.	Publicaciones	5
	2.2.	Proyectos de investigación	8
	2.3.	Participación en eventos científicos	. 11
	2.4.	Participación en redes	. 13
	2.5.	Premiación en evento científico	. 14
3.	EJE I	DE TRANSFERENCIA TECNOLÓGICA	. 16
	3.1.	Estrategias y gestión de negocios	. 16
4.	EJE I	DE INNOVACIÓN	. 19
	4.1.	StartUps impulsadas por el CIDIS	. 19
5.	OTR	OS RESULTADOS	. 24
	5.1.	Personal del CIDIS año 2017	. 24
	5.2.	Seminarios, talleres y charlas integradoras	. 25
	5.3.	Adquisiciones año 2017	. 26
	5 /	Resultados POA 2017	27

MENSAJE DEL DIRECTOR

El *Informe de Gestión 2017* tiene como propósito socializar e informar a la comunidad sobre las diferentes actividades ejecutadas y los resultados obtenidos por los miembros del CIDIS durante el año en curso, esencialmente estas actividades están dentro del contexto del Plan Operativo Anual (POA) de la ESPOL.

Durante los últimos años, el *Centro de Investigación, Desarrollo e Innovación de Sistemas Computacionales* – CIDIS ha basado su estructura

de trabajo en cuatro ejes estratégicos que han ayudado al desarrollo y consolidación del centro, estos ejes han sido: eje de investigación, eje de transferencia tecnológica, eje de innovación y eje de gestión. El contenido de esta revista está organizado en función de los resultados generados en cada uno estos ejes.

Las actividades del eje de investigación están orientadas a la obtención de nuevos conocimientos y su aplicación para la solución a problemas o interrogantes de carácter científico. Este eje maneja proyectos, publicaciones y formación de personal científico. Por otro lado, el eje de transferencia tecnológica pone a disposición de las empresas y organizaciones los servicios de experticia del centro, para desarrollar nuevas aplicaciones y tecnologías de interés. Mientras que, la función del eje de innovación es apoyar la creación y consolidación de empresas de base tecnológica en áreas afines al centro.

Durante el período 2017, entre los resultados más notorios de estos ejes se incluyen: publicaciones de artículos indexados, generación de propuestas y ejecución de proyectos de investigación, participación en eventos científicos, avances de estudios doctorales de miembros del centro, visitas a empresas públicas y privadas para ofrecer servicios, apoyo a la creación de startups, vinculación de nuevos miembros al centro e información de las facilidades e instalaciones del CIDIS. Como destacable se tiene la obtención del reconocimiento de uno de los trabajos publicados que fue elegido como "Best Paper Award" en uno de los congresos más importantes a nivel mundial.

Todos estos logros han sido el resultado de un trabajo conjunto entre los miembros y colaboradores del centro y nos alienta a asumir grandes desafíos en el futuro inmediato. A todos los miembros y colaboradores que hicieron posible estos logros, el agradecimiento institucional y en especial del CIDIS.

¡Muchas gracias a todos por sus valores de entusiasmo, persistencia, dedicación y trabajo en equipo!

Boris X. Vintimilla Burgos, PhD.
Director CIDIS

1. PRESENTACIÓN DEL CENTRO

1.1. ¿ Quiénes somos ?

El **CIDIS** – Centro de Investigación, Desarrollo e Innovación de Sistemas Computacionales – es un centro de I+D+i enfocado a desarrollar productos y servicios tecnológicos, basados en la integración de sistemas de hardware y software.

Estos productos y servicios son soluciones innovadoras que contribuyen al desarrollo tecnológico del sector industrial y la sociedad en general.

Tecnologías de apoyo para problemas dentro de: la agricultura, acuicultura, manufactura, transporte y sistemas de energía son desarrolladas dentro del centro.

El CIDIS conforma uno de los centros de investigación, desarrollo e innovación del *Parque del Conocimiento* – PARCON – de la *Escuela Superior Politécnica del Litoral* – ESPOL – y es un centro que trabaja sobre grandes campos de investigación y desarrollo de tecnología, con el carácter transversal ya que sirve de apoyo a otros centros y laboratorios tanto de la ESPOL como de otras instituciones.

<u>Misión</u>

Desarrollar productos y servicios basados en sistemas integrados de software y hardware, transferir conocimientos y proponer soluciones innovadoras a favor del desarrollo tecnológico industrial del Ecuador.

<u>Visión</u>

Consagrarse como un centro institucional referente en investigación, desarrollo e innovación de servicios y productos de base tecnológica industrial tanto a nivel nacional como internacional.

Valores

Confianza

Calidad

Compromiso

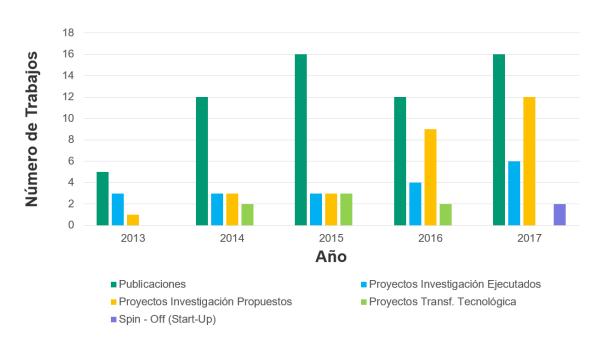
Desarrollo

Eficiencia

1.2. Ejes estratégicos del centro

La Estructura de Trabajo del CIDIS se basa en cuatro ejes estratégicos que ayudan al desarrollo y consolidación del centro. Estos ejes estratégicos buscan, entre otras cosas, la captación de fondos que permiten el financiamiento de los trabajos de investigación, transferencia tecnológica e innovación realizados por el personal del CIDIS. Además, aportan al cumplimiento de los objetivos y metas que la institución espera alcanzar dentro del Plan Operativo Anual – POA.

Los ejes estratégicos del CIDIS son:


- Eje de Investigación: Este eje es el responsable de las actividades de investigación del centro. En la actualidad el CIDIS apoya el desarrollo de las áreas de: visión por computador, robótica de servicio y de campo, aprendizaje de máquinas y control avanzado de sistemas de energía.
- Eje de transferencia tecnológica: El objetivo del eje de transferencia tecnológica es actuar como hilo conductor entre la Sociedad y la Universidad a través del CIDIS. Este eje tiene por objeto desarrollar nuevas aplicaciones y tecnologías, las cuales pone a disposición del sector industrial, instituciones del gobierno y la sociedad en general.
- Eje de innovación: El eje de innovación del CIDIS apoya la creación y consolidación de empresas de base tecnológica en áreas afines al centro. Estas empresas o startups generalmente surgen a través de las actividades de investigación o transferencia tecnológica que realiza el centro.
- Eje de gestión del centro: Este eje se encarga de las acciones o diligencias relacionadas con la gestión administrativa y financiera del centro para su correcto funcionamiento. Permite gestionar y dar seguimiento a los trámites necesarios para la adecuada ejecución de las actividades de los otros ejes estratégicos del centro.

1.3. Resultados I+D+I de los últimos años

En la siguiente gráfica se muestra los resultados más relevantes generados por los miembros del CIDIS en los últimos cinco años. Estos resultados han sido agrupados en 5 indicadores principales que son: publicaciones, proyectos de investigación propuestos, proyectos de investigación ejecutados, proyectos de transferencia tecnológica y Spin-Off apoyadas.

Resultados I+D+i - CIDIS - Últimos 5 Años

2. EJE DE INVESTIGACIÓN

Durante el año 2017 los miembros del CIDIS generaron diferentes tipos de resultados como indicadores del eje de investigación del centro. Entre estos resultados los más destacados son: publicaciones científicas indexadas, ejecución y formulación de proyectos de investigación, asistencia y participación en eventos científicos.

A continuación, se detallan los resultados obtenidos en este eje.

2.1. Publicaciones

Como parte de los resultados de investigación realizados en el centro, 16 artículos científicos fueron publicados en eventos internacionales durante el 2017. Estos artículos tienen indexación SCOPUS o WOS. Adicionalmente, se publicaron también otros 2 artículos a través de otras plataformas de indexación.

Como destacable de estas publicaciones se debe mencionar el artículo: "Infrared Image Colorization based on a Triplet DCGAN Architecture" publicado en el IEEE Workshop on Perception Beyond the Visible Spectrum-In conjunction with CVPR 2017, el cual fue elegido como el "Best Paper Award" del congreso. Este reconocimiento también fue premiado con la donación de hardware para el desarrollo de futuros trabajos en el área de procesamiento de imágenes.

A continuación se detalla la información de las publicaciones generadas por el personal del centro.

2.1.1. Publicaciones indexadas SCOPUS o WOS

	Título del artículo	Nombre de la revista/congreso	Información de publicación	Lista de autores
1	Adaptive Harris Corners Detector Evaluated with Cross-Spectral Images	International Conference on Information Technology & Systems	Aceptado para: 2018	Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla
2	Multispectral Single- Sensor RGB-NIR Imaging: New Challenges and Opportunities	7th International Conference on Image Processing Theory, Tools and Application	Diciembre 2017	Xavier Soria, Angel Sappa, Arash Akbarinia
3	Learning Image Vegetation Index through a Conditional Generative Adversarial Network	2nd IEEE Ecuador Tehcnnical Chapters Meeting (ETCM)	Octubre 2017	Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla

4	Development of animated facial expressions to express emotions in a robot: Robotlcon	2nd IEEE Ecuador Technical Chapter Meeting (ETCM)	Octubre 2017	Lukas Danev, Marten Hamann, Nicolas Fricke, Tobias Hollarek, Dennys Paillacho
5	Colorizing Infrared Images through a Triplet Conditional DCGAN Architecture	19th International Conference on Image Analysis and Processing	DOI: 10.1007/978-3-319-68560-1_26	Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla
6	Infrared Image Colorization based on a Triplet DCGAN Architecture * * Este artículo obtuvo el "Best Paper Award" del congreso.	IEEE Workshop on Perception Beyond the Visible Spectrum-In conjunction with CVPR 2017	DOI: 10.1109/CVPRW. 2017.32	Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla
7	Learning to Colorize Infrared Images	15th International Conference on Practical Applications of Agents and Multi- Agent Systems	Volume 619, pag. 164-172 DOI: https://doi.org/1 0.1007/978-3- 319-61578-3_16	Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla
8	RGBN Multispectral Images: a Novel Color Restoration Approach	15th International Conference on Practical Applications of Agents and Multi- Agent Systems	DOI: https://doi.org/1 0.1007/978-3- 319-61578-3_15	Christian Aguilera, Xaver Soria, Angel Sappa, Ricardo Toledo
9	A Dijkstra-based algorithm for selecting the Shortest-Safe Evacuation Routes in dynamic environments (SSER)	The 30th International Conference on Industrial, Engineering, Other Applications of Applied Intelligent Systems (IEA/AIE 2017)	Volume 10350, pag. 131-135 DOI: https://doi.org/1 0.1007/978-3- 319-60042-0_15	Angely Oyola, Dennis Romero, Boris Vintimilla
10	An Empirical Comparison of DCNN libraries to implement the Vision Module of a Danger Management System	International Conference on Deep Learning Technologies (ICDLT)	DOI: 10.1145/3094243 .3094255	Sianna Puente, Cindy Madrid, Miguel Realpe, Boris Vintimilla

11	A 3D Vision Based Approach for Optimal Grasp of Vacuum Grippers	International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM)	DOI: 10.1109/ECMSM. 2017.7945886	Angel J. Valencia, Roger M. Idrovo, Angel D. Sappa, Douglas Plaza Guingla, Daniel Ochoa
12	Cross-spectral Image Patch Similarity using Convolutional Neural Network	2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM)	Volume 17, issue 4. Sensors. 2017 DOI: 10.1109/ECMSM. 2017.7945888	Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla
13	Cross-Spectral Local Descriptors via Quadruplet Network	otors via Sensors Journal		Aguilera C.A., Sappa A.D., Aguilera C. and Toledo R.
14	Fine-tuning based deep convolutional networks for lepidopterous genus recognition Fine-tuning based Lecture Notes in Computer Science		Volume 10125, pag. 467-475 DOI: https://doi.org/1 0.1007/978-3- 319-52277-7_57	Carvajal, J.A., Romero, D.G., Sappa, A.D.
16	Special Issue on Autonomous Driving and Driver Assistance Systems	Robotics and Autonomous Systems	Volume 91, pag. 208-209 DOI: https://doi.org/1 0.1016/j.robot.20 17.01.011	Vitor Santos, Angel D. Sappa, Miguel Oliveira

2.1.2. Otras publicaciones

Además de las publicaciones con indexación SCOPUS o WOS, se publicaron otros dos artículos a través de otras plataformas de indexación, las referencias de estos artículos son:

	Título del artículo	Nombre de la revista/congreso	Información de publicación	Lista de autores
1	Evaluación de técnicas de clasificación orientadas a la identificación automática de órganos del camarón a partir de imágenes histológicas	International Multi- Conference for Engineering, Education, and Technology (LACCEI)	Julio 2017	Dennis Romero, Roberto Yoncon, Angel Guale, Bonny Bayot and Fanny Panchana
2	Análisis de estrategia de innovación para la creación de empresas de base tecnológica	I Congreso Internacional en Ciencias de La Empresa CICE 2017	Noviembre 2017	Alvaro Torres, Heidy Pamiño.

2.2. Proyectos de investigación

Dentro de esta sección se destacan los indicadores referentes a los proyectos propuestos y proyectos ejecutados en el 2017. En estos indicadores el centro generó 12 propuestas de proyectos de investigación y ejecutó 6 proyectos.

Cabe destacar que entre las 4 propuestas de proyectos que fueron aceptadas, la propuesta de mayor financiamiento económico es: "Red temática iberoamericana sobre aplicaciones TICs para ciudades inteligentes" con un presupuesto total de €135.424,90 para ejecutarse en el período 2018 − 2021. Este proyecto será financiado por el CYTED de España y su coordinador es el Dr. Angel Sappa.

Los detalles de estos indicadores son dados a continuación.

2.2.1. Proyectos propuestos

Durante el año 2017, 12 propuestas de proyectos fueron presentadas para ser evaluadas por organismos nacionales e internacionales. De estas propuestas: 4 han sido aceptadas, 4 se encuentran en proceso de evaluación y 4 no fueron aceptadas.

Los trabajos propuestos en las diferentes convocatorias son:

	Título del proyecto	Convocator ia	Monto	Fecha de envío	Estado
1	Sinergias entre grupos de investigación interesados en tecnologías relacionadas con el deep learning y la visión artificial	CEPRA 2017	\$93.150,00	Abril, 2017	No Aceptada
2	Evaluación e implementación de técnicas avanzadas de clasificación para la categorización automática y geolocalización de especies de orquídeas ecuatorianas	CEPRA 2017	\$95.898,22	Abril, 2017	No Aceptada
3	Red temática iberoamericana sobre aplicaciones TICs para ciudades inteligentes	CYTED	€135.424,9 0	Abril, 2017	Aceptada
4	Perception beyond the visible spectrum	Google Latin America Research Awards	\$23.400,00	Mayo, 2017	No Aceptada
5	Selection of the most relevant activations from interlayers features of trained convolutional neural networks for optimization the fine/tuning process, aimed at identifying diseases from microscope images	Microsoft Azure Research	\$20.000,00	Junio, 2017	Aceptada
6	A cross-modal transfer approach for histological images, case study in aquaculture for disease identification using zero-shot learning	Samsung	\$88.825,00	Octubre, 2017	No Aceptada
7	Perception beyond the visible spectrum	NVIDIA GPU Grant Program	\$2380,00	Octubre 2017	Aceptada
8	Image enhancement	Adobe Research Fellowship	\$10.000,00	Octubre 2017	En Evaluación

9	Computer-aided image analysis for mosquito-borne diseases (dengue, zika, and chikungunya) (Phase 1)	NIH 2017	\$40.000,00	Octubre, 2017	En Evaluación
10	Perception beyond the visible spectrum for an efficient tropical diseases detection approach (PBVS4TDD)	NIH 2017	\$35.400,00	Octubre, 2017	En Evaluación
11	Natural image enhancement a cross-spectral based approach	NVIDIA GPU Grant Program	\$2380,00	Noviembre 2017	Aceptada
12	Creación de un sistema integrado para la asistencia en el monitoreo y evaluación de campos agrícolas por medio del uso de vehículos aéreos no tripulados implementados con hardware y software libres	SENESCYT	\$49.700,00	Noviembre 2017	En Evaluación

2.2.2. Proyectos ejecutados

6 proyectos fueron ejecutados en el 2017. De estos, 3 proyectos finalizaron este año y los otros 3 continuarán su ejecución durante el 2018.

	Título del proyecto	Director	Participantes	Duración
1	Procesamiento, representación y análisis de imágenes multiespectrales (PRAIM)	Angel Sappa	Vintimilla Boris, Suárez Patricia, Soria Xavier, Francis Stalin	Mayo 2015 – Abril 2020
2	Selection of the most relevant activations from interlayers features of trained convolutional neural networks for optimization the fine/tuning process, aimed at identifying diseases from microscope images.	Romero Dennis Guillermo	Romero López Dennis, Sappa Angel, Bayot Bonny	Junio 2016 – Junio 2018

3	Perception beyond the visible spectrum	Angel Sappa		Nov. 2017 – Nov. 2018
4	Sistema Integrado de Administración de Emergencias Utilizando Redes de Sensores y Señalética Reactiva	Vintimilla Boris Xavier	Romero López Dennis, Marín García Ignacio, Chavez Burbano Patricia, Muñoz Arcentales José, Sappa Angel, Arreaga Alvarado Nestor, Velasquez Vargas Washington, Paillacho Chiluiza Dennys, Realpe Robalino Miguel	Ago. 2014 – Sept. 2017
5	Reconocimiento de patrones: casos de estudio en la agricultura y acuicultura	Romero Dennis Guillermo	Romero López Dennis, Bayot Bonny, Sonnenholzner Stanislaus, Vintimilla Burgos Boris, Calderón María Fernanda, Sappa Ángel, Galarza Luis	Sept. 2015 – Sept. 2017
6	Evaluación de una pila de celdas de combustible tipo PEM de 3000 W en un vehículo híbrido	López Miguel Andrés	Gonzalo Almeida Pazmiño, Wilton Ágila Gálvez, Freddy Jervis	Abril 2016 – Mar. 2017

2.3. Participación en eventos científicos

Tomando ventaja de las publicaciones generadas, varios investigadores del CIDIS asistieron y participaron a eventos nacionales e internacionales, tales como: congresos, conferencias y workshops, para presentar sus artículos publicados.

Cabe indicar que la asistencia a estos eventos es también una gran oportunidad para los investigadores, ya que les permite conocer las tendencias y los tópicos de actualidad en las diferentes áreas de interés del centro, así como también es una excelente oportunidad para establecer vínculos de relacionamiento con colegas externos para la ejecución de futuras actividades de investigación.

En la siguiente tabla se listan los eventos científicos a los que asistieron y participaron los miembros del CIDIS.

	Nombre del evento	Título presentación	Investigador	País	Fecha
1	Congreso Internacional de Ciencias de la Empresa.	Análisis de la estrategia de innovación para la creación de empresas de base tecnológica.	Alvaro Torres V.	Ecuador	Nov. 2017
2	2nd IEEE Ecuador Tehcnnical Chapters Meeting (ETCM) 2017	Learning Image Vegetation Index through a Conditional Generative Adversarial Network	Patricia L. Suárez	Ecuador	Oct. 2017
3	2nd IEEE Ecuador Tehcnnical Chapters Meeting (ETCM) 2017	Development of animated facial expressions to express emotions in a robot: Robotlcon	Dennys Paillacho	Ecuador	Oct. 2017
4	19th International Conference on Image Analysis and Processing (ICIAP)"	Colorizing Infrared Images through a Triplet Conditional DCGAN Architecture	Angel Sappa	Italia	Sept. 2017
5	IEEE Workshop on Perception Beyond the Visible Spectrum-In conjunction with CVPR 2017	Infrared Image Colorization based on a Triplet DCGAN Architecture	Patricia L. Suárez & Angel Sappa	USA	Jul. 2017
6	15th International Conference on Practical Applications of Agents and Multi-Agent Systems	1) Learning to Colorize Infrared Images. 2) RGBN Multispectral Images: a Novel Color Restoration Approach	Angel Sappa	Portugal	Jun. 2017

7	International Conference on Deep Learning Technologies (ICDLT)	An Empirical Comparison of DCNN libraries to implement the Vision Module of a Danger Management System	Miguel Realpe	China	Jun. 2017
8	The 30th International Conference on Industrial, Engineering Shortest 6		Dennis G. Romero	Francia	Jun. 2017
9	2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM)	Cross-spectral Image Patch Similarity using Convolutional Neural Network	Patricia L. Suárez	España	May. 2017

2.4. Participación en redes

En lo relacionado a la participación en redes de investigación, algunos miembros del CIDIS participaron en la Red Ecuatoriana de Hidrógeno dentro del programa auspiciado por la REDU, el detalle de esta participación es el siguiente:

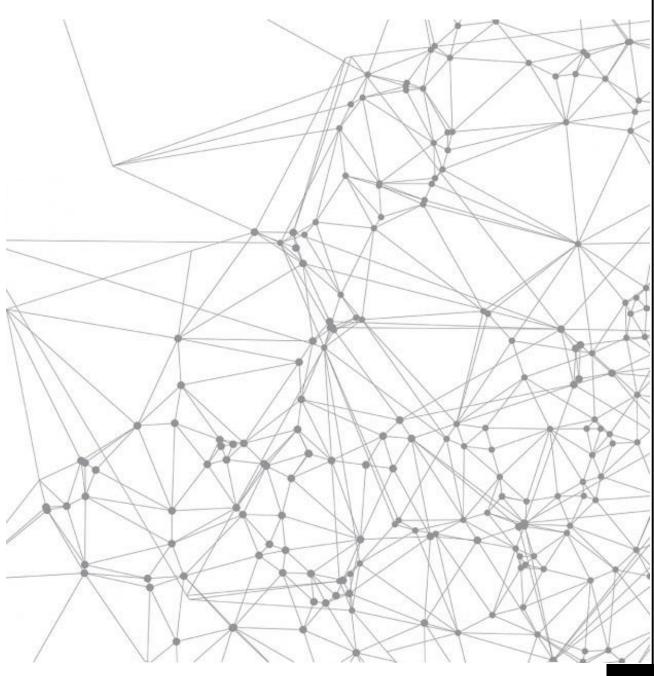
Nombre de la Red	Tipo de Red	Representante ESPOL	Link de Información	Convenio (SI/NO)
Red Ecuatoriana de Hidrógeno	Investigación	Wilton Agila Gonzalo Almeida	http://www.redu.edu.ec/	Si

2.5. Premiación en evento científico.

En Julio del 2017 los investigadores del CIDIS, Msc. Patricia Suárez y Dr. Angel Sappa, asistieron y participaron a la *IEEE Conference on Computer Vision and Pattern Recognition CVPR 2017* realizado en la ciudad de Honolulu, USA, para presentar el trabajo de investigación titulado: "Infrared image colorization based on a triplet DCGAN architecture" en el Workshop del CVPR 2017.

En esta conferencia dicho trabajo obtuvo el reconocimiento del "Best Paper Award" en el Workshop. Cabe indicar que el CVPR es el principal evento científico anual dentro de la temática de visión por computador y reconocimiento de patrones.

Este trabajo es parte del tema de tesis doctoral realizado por la Msc. Patricia Suárez, dentro del programa de doctorado en Ciencias Computacionales de la Facultad de Ingeniería en Electricidad y Computación – FIEC de la ESPOL.



Msc. Patricia Suárez y Dr. Angel Sappa con el reconocimiento del "Best Paper Award" por el artículo publicado en el CVPR2017. La empresa NVIDIA otorgó una tarjeta GPU Titan X como premio.

EJE DE TRANSFERENCIA TECNOLÓGICA

3. EJE DE TRANSFERENCIA TECNOLÓGICA

La transferencia tecnológica es un proceso de transmisión de conocimientos científicos y tecnológicos entre la universidad y la sociedad, para desarrollar nuevas aplicaciones y tecnologías al servicio y uso de los mismos, por lo que es un factor crítico para el proceso de innovación y competitividad.

El objetivo del eje de Transferencia Tecnológica del CIDIS es actuar como hilo conductor entre la Sociedad y la ESPOL a través del CIDIS.

En este contexto, el CIDIS pone a disposición de las empresas, instituciones del gobierno y la sociedad en general sus servicios de:

- Consultoría / Asesoría
- Desarrollo de proyectos específicos y personalizados
- Investigaciones patrocinadas.

Las áreas dentro de las cuales se ofrecen estos servicios son:

- Visión Por Computador
- Robótica de Servicio y de Campo
- Aprendizaje de Máquina y
- Control Avanzado de Sistemas de Energía

3.1. Estrategias y gestión de negocios

Como parte de la gestión que realiza el CIDIS para conseguir proyectos de prestación de servicios de Transferencia de Tecnología, se realizan visitas a distintas empresas del país tanto públicas como privadas para encontrar oportunidades de aplicación de las áreas de conocimiento del centro.

En general, una vez que el CIDIS ha estudiado la viabilidad del problema propuesto por la empresa, los trabajos de transferencia de tecnología se ejecutan mediante el establecimiento de un convenio de colaboración entre universidad-empresa para la realización de un proyecto de interés común.

Visitas realizadas a empresas durante el 2017

A pesar de que a lo largo del 2017 el personal del eje de transferencia tecnológica del CIDIS realizó varias visitas a empresas del país, y que a su vez se presentaron sus respectivas cotizaciones para los problemas planteados por las empresas visitadas, al final del año, no se pudo concretar ninguna adjudicación de proyectos de transferencia tecnológica para el centro.

Se estima que una de las posibles causas de no haberse concretado al menos un logro en este indicador pudo haber sido a que durante el 2017 el país estuvo envuelto en elecciones presidenciales, lo cual generó un síntoma de inseguridad en el ambiente

empresarial y social que frenó la toma de decisión final para la adjudicación de los proyectos.

A continuación se listan las visitas realizadas a varias empresas del país.

Visita	Empresa	Problemas planteados	Lugar	Fecha
1	Papelera Nacional	Control automático de parámetros de aguas residuales	M. Maridueña, Guayas	11 Dic. 2017
2	CENAIM & ASOCAM	Control y monitoreo de las aguas de piscinas del camarón	San Pedro, Santa Elena	23 Oct. 2017
3	Armada del Ecuador	Requerimiento de mejora del simulador de vuelo	Manta, Manabí	Marz. 2017
4	PETRA - Ing. Galo Montenegro	Sistema integral para la gestión, visualización y reconocimiento de imágenes de muestras pétreas	Guayaquil, Guayas	Marz. 2017

FJE DE INNOVACIÓN

4. EJE DE INNOVACIÓN

4.1. StartUps impulsadas por el CIDIS

Uno de los principales objetivos del CIDIS consiste en apoyar la creación y consolidación de empresas de base tecnológica en áreas afines al centro. Estas empresas tecnológicas o StartUps generalmente nacen a través de las actividades de investigación o transferencia tecnológica que el personal del centro realiza.

En este contexto, el CIDIS durante el 2017 inició el apoyo para la creación de 2 StartUps enfocadas al desarrollo de tecnologías y servicios para el sector acuícola y para el sector de energías. Estos emprendimientos son la StartUp "BluEcos" y la StartUp "Ibertek".

Una pequeña introducción de estas StartUps es presentado a continuación.

StartUp: "BluEcos"

BluEcos es un emprendimiento de base tecnológica que aporta con soluciones para tecnificar el sector industrial del país. BluEcos nace del proyecto de investigación: "Reconocimiento de patrones: casos de estudio en la agricultura y acuicultura" ejecutado en el CIDIS y financiado por la ESPOL.

BluEcos se dedica a desarrollar e implementar tecnología de alta calidad, para ayudar a las empresas en el proceso de toma de decisiones, a través de la obtención de información de diferentes medios en tiempo real, y que permite actuar de manera oportuna.

Actualmente la empresa está conformada por un selecto grupo de ingenieros en áreas complementarias de sistemas de información, tales como: ciencias computacionales, telemática y telecomunicaciones.

BlueSensor - modelo 2M

BluEcos ha desarrollado su primer producto llamado: "BlueSensor - modelo 2M", el cual combina hardware y software para medir y monitorear datos del agua en tiempo real en ambientes acuícolas, recolectando estos datos a lo largo del tiempo y explota esta información para: generar alertas de situaciones no deseadas, historial de información,

automatización de equipos que actúan para mitigar problemas o para apoyar con información en la toma de decisiones.

Este sistema permite a los usuarios tener un control exhaustivo de las piscinas o estanques acuícolas, para optimizar el correcto proceso de desarrollo de organismos tales como: camarones, algas, peces, micro-bacterias, entre otros.

Medir y actuar es uno de los principales frentes que aborda *BlueSensor*, entre ellos se encuentra la gestión de manejo de información para así brindar el servicio a los usuarios.

BlueSensor – modelo 2M brinda el servicio de información en tiempo real de parámetros físico- químicos del agua (oxígeno y temperatura) y gestiona la actuación para su mejor aprovechamiento en el área de su aplicación.

La siguiente figura muestra un esquema general de los componentes que forman BlueSensor - modelo 2M.


Sistema de monitoreo BlueSensor - modelo 2M

En Septiembre de 2017, con el fin de darse a conocer e incursionar en el mercado local, la Startup *BluEcos* participó en la feria comercial AquaExpo 2017, evento organizado por la Cámara Nacional de Acuacultura, con su producto *BlueSensor - modelo 2M*.

Esta feria se realizó en la ciudad de Guayaquil y está catalogada entre la más grande de las Américas.

AquaExpo 2017 contó además con la participación de más de 35 empresas y los visitantes recibieron información sobre los últimos desarrollos tecnológicos y servicios para la industria acuícola nacional.

Participación de BluEcos en la feria AquaExpo 2017

StartUp: "Ibertek"

IBERTEK es una empresa Startup impulsada por el CIDIS, enfocada en tecnologías para el ahorro y la eficiencia energética. Ofrece servicios especializados para brindar al sector industrial, empresarial y residencial, soluciones innovadoras y eficientes en el uso de la energía con el mayor valor agregado, garantizando así la satisfacción del cliente.

IBERTEK cuenta con un equipo de profesionales altamente capacitados, especializados y comprometidos, que combinan la experiencia, madurez y juventud, tomando un impulso nuevo y dinámico en el desarrollo de su actividad en el área de la eficiencia e innovación energética, destacando principalmente en áreas de:

- Energías renovables y arquitectura bioclimática.
- Automatismo y control avanzado de sistemas de energía y procesos.
- Sistemas eléctricos de baja y media tensión.

Al contar con la colaboración del CIDIS, como uno de los recursos claves, IBERTEK lleva a cabo un proceso de investigación que le permite conseguir innovaciones aplicables en productos existentes y desarrollar prototipos de nuevos productos.

En la actualidad la Startup IBERTEK está desarrollando un prototipo adaptable a Sistemas de Energía Termosolar para el sector residencial.

QTRQS RESULTADOS

5. OTROS RESULTADOS

5.1. Personal del CIDIS año 2017

En el periodo 2017 el CIDIS contó con la participación de investigadores, estudiantes de doctorado, ayudantes de gestión e investigación, pasantes y estudiantes de materia integradora de la ESPOL; quienes trabajaron de forma conjunta en diferentes actividades.

La siguiente tabla lista los miembros que laboraron durante los periodos I y II término del 2017 en el centro.

Nombre	Área	Período 2017
Álvaro G. Torres V.	Transf. Tecnológica e Innovación	I - II término
Angel D. Sappa	Visión por computador	I - II término
Angely Oyola S.	Visión por computador	I - II término
Anthonny Altamirano C.	Gestión administrativa	I término
Boris Vintimilla B.	Visión por computador	I - II término
Branny Chito	BluEcos	I - II término
Byron Pin C.	Gestión administrativa	II término
Carlos Manosalvas	Visión por computador	II término
Carolina Godoy	Control avanzado de sistemas de energía	I - II término
Christopher Baidal	BluEcos	I - II término
Dennis Romero L.	Aprendizaje de máquinas	I - II término
Dennys Paillacho Ch.	Robótica de servicio y de campo	I - II término
Eddie Hurtado	Aprendizaje de máquinas	I - II término
Francisco Vidal	Ibertek	II término
Gabriela Reyes	Gestión administrativa	II término
Jose Luis Laica	Robótica y servicios de campo	II término
Juan A. Carvajal	Visión por computador	I término

Nombre	Área	Período 2017
Kevin Arteaga	BluEcos	I - II término
Ma. Fernanda Aguiñaga	Gestión administrativa	I término
Miguel Realpe R.	Robótica de servicio y de campo	I - II término
Milton Mendieta	Aprendizaje de máquinas	I - II término
Milton Vera G.	Ayudante soporte técnico	I término
Narcisa Colcha	Robótica y servicios de campo	I - II término
Patricia Suárez R.	Visión por computador	I - II término
Peter Molina C.	Ibertek	II término
Salvador Alonso	Ibertek	II término
Wilmer Acosta O.	Ayudante soporte técnico	II término
Wilton Agila G.	Control avanzado de sistemas de energía	I - II término

Adicionalmente, el CIDIS recibió a 5 pasantes de pregrado y participó en varios proyectos de materia integradora de 7 estudiantes de pregrado, los mismos que asistieron a realizar sus actividades en el centro durante el I y II término académico 2017. Para cada caso, el CIDIS designó un coordinador responsable de estos estudiantes.

5.2. Seminarios, talleres y charlas integradoras

A lo largo del 2017 en el CIDIS se realizaron varias actividades de integración entre sus miembros. Estas actividades permitieron compartir conocimientos y experiencias alrededor de conversatorios sobre temáticas afines y de interés del personal del centro.

En total 12 actividades de integración entre seminarios, talleres y charlas fueron ejecutadas. Estos seminarios, talleres y charlas sirvieron con un punto de encuentro a fin de compartir ideas, conocer tendencias y explorar potenciales temas para el desarrollo de futuros proyectos, así como también sirvieron para conocer el uso de herramientas de trabajo colaborativo útiles en los proyectos de investigación.

Cabe indicar que la mayoría de estas actividades de integración se llamaron "BrainStorming CIDIS" y fueron lideradas por el Profesor Dennys Paillacho.

A continuación, el detalle de los seminarios, talleres y charlas que se realizaron durante el 2017.

No.	Tema	Expositor	Fecha
1	Charla: Modelo de negocio de la empresa Martec para un outsourcing de impresión	Ing. Mayra Ortega	22 May. 2017
2	Taller BrainStorming CIDIS: Ideas con potencial comercial.	Sr. David Parrales	07 Jul. 2017
3	Taller BrainStorming CIDIS: KICAD - Plataforma abierta para el diseño de circuitos y tarjetas electrónicas.	Dr. Dennys Pillacho y Sr. Jose Luis Laica	21 Jul. 2017
4	Taller Brainstorming CIDIS: An hour with LoT (LUA PROGRAMMING)	Sr. Jose Luis Laica	24 Jul. 2017
5	Taller BrainStorming CIDIS: Diseño y desarrollo de prototipos bajo la iniciativa Open.	Dr. Dennys Paillacho	28 Jul. 2017
6	Taller Brainstorming CIDIS: Tarjeta de Aprendizaje de Programación en Pythony - FPy: Diseño Electrónico	Sr. Nelson Ortiz y Dr. Dennys Paillacho	4 Ago. 2017
7	Seminario: Similaridades entre regiones de imágenes Cross-Espectrales utilizando redes neuronales convolucionales.	Msc. Patricia Suárez	09 Ago. 2017
8	Taller BrainStorming CIDIS: Asiris Lab: Herramientas y equipos de prototipado. Taller FPy diseño industrial: carcasa	Ing. Jorge Gomez	18 Ago. 2017
9	Seminario BrainStorming CIDIS: Estudio de mercado, modelo de negocio, modelo Canvas y financiamiento.	Ec. Heidy Pazmiño	25 Ago. 2017
10	Taller BrainStorming CIDIS: Ensamblaje electrónico y de carcasa, programación hola mundo	Sr. José Luis Laica	01 Sept. 2017
11	Taller BrainStorming CIDIS: Tarjeta de aprendizaje de programación en Python - FPy: Diseño electrónico.	Sr. José Luis Laica	o8 Sept. 2017
12	Seminario: GitLab uso de herramienta de trabajo colaborativo	Sr. Wilmer Acosta	19-21 Nov. 2017

5.3. Adquisiciones año 2017

En el CIDIS la adquisición de equipos, insumos y materiales es de gran importancia y necesario para ofrecer las facilidades al personal durante la ejecución de sus actividades de investigación, gestión y de servicio.

Entre las adquisiciones que se realizaron en este año tenemos: 1 laptop, 1 impresora multifuncional, mobiliario de laboratorio, tóneres, inversor de voltaje, tarjetas para control de acceso, proyector, multímetro y suministros de oficina y de limpieza.

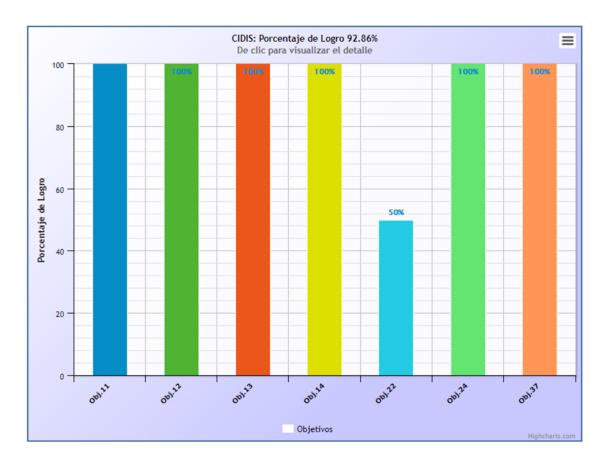
El presupuesto para financiar estas compras ha sido obtenido a través del apoyo de consumo interno y gestión de compras que la ESPOL facilita a los centros de investigación. Así como también, el CIDIS ayuda con el financiamiento de algunas de

estas adquisiciones a través de presupuestos generados a través de actividades de autogestión, tales como: proyectos de transferencia tecnológica o proyectos de investigación.

5.4. Resultados POA 2017

Finalmente, se presenta un resumen de las principales actividades realizadas por el personal del CIDIS dentro del Plan Operativo Anual (POA) 2017 planificado para la ESPOL.

Se puede notar que el CIDIS ha alcanzado con éxito todos sus objetivos propuestos dentro del POA 2017, con excepción del indicador de transferencia tecnológica en el cual no se pudo cumplir totalmente debido a las razones expuestas en la sección 3.1. Del mismo modo, es importante destacar que varios de los indicadores que fueron logrados fueron superados con un mayor número de resultados que el propuesto en la descripción del POA.


Los detalles y las evidencias para cada uno de estos indicadores han sido presentados en la respectiva plataforma del POA que la ESPOL usa para reportar y evidenciar las actividades realizadas.

La siguiente gráfica muestra la descripción de las actividades del POA 2017 del CIDIS y su respectivo porcentaje de avance logrado al final del año.

Código	Descripción	Estado	Pes0	Avance
11.27	Se desarrolló 5 actividades (seminarios, charlas, conferencias) que fomentan las habilidades de investigación de la planta docente (trabajo en equipo, liderazgo, creatividad, confrontación de ideas, hábito lector, escritura científica, solución a problemas, networking, ética)	POA	50% [100.009
11.28	Se ejecutaron proyectos de investigación alineados a las líneas de investigación de la ESPOL	POA	50%	100.009
12.4	Se desarrollaron trabajos de investigación que brindan una solución a un problema de la industria o sociedad y que tenga potencial comercial	POA	100%	100.009
13.11	Se presentó 4 propuestas de proyectos de investigación a instituciones nacionales e internacionales de financiamiento	POA	100%	100.009
14.46	Se publicó al menos 7 artículos científicos indexados en SCOPUS o ISI Web of Knowlegde (WOB)	POA	50%	100.009
14.47	Se impartió al menos 4 ponencias en eventos nacionales o internacionales de investigación	POA	50%	100.009
22.1	Se realizó proyectos de prestación de servicios o transferencia de tecnologías a empresas públicas y privadas	POA	100%	50,00%
24.21	Creación de la nueva página web del CIDIS y actualización de su contenido.	POA	100%	100.009
37.1	Se gestionó la adquisición de equipos especializados para los grupos de investigación del centro, de acuerdo a la lista de equipos presentada al Rector.	POA	100%	100.009

El porcentaje de logro versus los objetivos de las actividades del POA 2017 del CIDIS se presenta a continuación.

